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YIELD ESTIMATION FROM HYPERSPECTRAL IMAGERY

USING SPECTRAL ANGLE MAPPER (SAM)

C. Yang,  J. H. Everitt,  J. M. Bradford

ABSTRACT. Vegetation indices (VIs) derived from remotely sensed imagery are commonly used to estimate crop yields. Spectral
angle mapper (SAM) provides an alternative approach to quantifying the spectral differences among all pixels in an image
and therefore has the potential for mapping yield variability. The objective of this study was to apply the SAM technique to
airborne hyperspectral imagery for mapping yield variability. Airborne hyperspectral imagery was acquired from two grain
sorghum fields in south Texas, and yield data were collected using a grain yield monitor. SAM images were generated from
the hyperspectral images based on six reference spectra extracted directly from the hyperspectral images and four reflectance
spectra measured on the ground. Statistical analysis showed that the ten SAM images for each field produced similar
correlation coefficients with yield. For comparison, all 5151 possible narrow‐band normalized difference vegetation indices
(NDVIs) were derived from the 102‐band images and related to yield. Results showed that the SAM images based on the soil
reference spectra provided higher correlation coefficients with yield than 75% and 92% of the 5151 narrow‐band NDVIs for
fields 1 and 2, respectively. Like an NDVI image, a SAM image can be easily generated from a hyperspectral image to
characterize the spatial variability in yield. Moreover, since the best NDVI typically varies with yield datasets, a SAM image
based on a single reference spectrum can be a better representation of yield variability if actual yield data are not available
for the identification of the best NDVI. The results from this study indicate that the SAM technique can be used alone or in
conjunction with other VIs for yield estimation from hyperspectral imagery.

Keywords. Hyperspectral imagery, Normalized difference vegetation index (NDVI), Remote sensing, Spectral angle mapper
(SAM), Yield estimation, Yield monitor.

egetation indices (VIs) derived from the spectral
bands in multispectral imagery have commonly
been used for crop yield estimation (Wiegand et
al., 1991; Senay et al., 1998; GopalaPillai and

Tian, 1999; Plant et al., 2000; Yang and Everitt, 2002). These
VIs are usually formed from combinations of visible and
near‐infrared (NIR) wavebands. Two of the earliest and most
widely used VIs are the simple ratio (NR = NIR/Red) (Jordan,
1969) and the normalized difference vegetation index
[NDVI�= (NIR ‐ Red)/(NIR + Red)] (Rouse et al., 1973).
Others include band ratios (BN = Blue/NIR and GN = Green/
NIR) and normalized differences such as the blue NDVI
[BNDVI = (NIR ‐ Blue)/(NIR + Blue)] and the green NDVI
[GNDVI = (NIR ‐ Green)/(NIR + Green)]. Yang and Everitt
(2002) used band ratios NR and NG as well as normalized
differences NDVI and GNDVI derived from airborne color‐
infrared (CIR) imagery to generate yield maps for delineating
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within‐field spatial variability as compared with yield
monitor data.

In recent years, airborne hyperspectral imagery has been
evaluated for yield estimation (Goel et al., 2003; Yang et al.,
2004a, 2004b; Jang et al., 2005). Hyperspectral imagery
contains tens to hundreds of narrow spectral bands. These
nearly continuous spectral data have the potential for better
differentiation and estimation of biophysical attributes of
interest. Thenkabail et al. (2000) related crop variables to
ground reflectance data measured in 490 discrete narrow
bands between 350 and 1,050 nm to identify the optimum
bands using multiple regression analysis. They also
calculated narrow‐band NDVIs involving all possible two‐
band combinations of 490 bands and identified the best
narrow‐band NDVIs for each crop variable. Yang et al.
(2004a) applied stepwise regression analysis on grain
sorghum yield monitor data and 102‐band airborne
hyperspectral imagery to identify optimum band
combinations for mapping yield variability. They also used
principal components analysis (PCA) and stepwise
regression to select the significant principal components to
account for the yield variability. To demonstrate the
advantage of narrow hyperspectral bands over broad
multispectral  bands for yield estimation, Yang et al. (2004b)
aggregated hyperspectral bands into the Landsat‐7 ETM+
sensor's four broad visible and NIR bands and found that the
combinations of significant narrow bands explained more
yield variability than the four broad bands.

Although multiple regression and narrow‐band NDVI
analysis can be used to identify the optimum bands for yield
estimation,  these bands are only the best for the particular
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image and yield data set from which they are derived and may
not be the best for a different data set. For example, Yang et
al. (2004a) identified four optimum bands using stepwise
regression for one field and seven completely different bands
for a second field for estimating grain sorghum yield.
Similarly, the optimum NDVI identified for one data set may
not be the best for another. Moreover, the number of narrow‐
band NDVIs for a hyperspectral image can be so large that it
may not be practical to find the optimum NDVI for each data
set. For example, there are a total of 128!/(126! × 2!) = 8128
possible narrow‐band NDVI images for a 128‐band
hyperspectral image. Therefore, it is necessary to use a
technique that takes advantage of the spectral information in
all the bands and still provides a good estimate of yield.

Spectral angle mapper (SAM) is a spectral technique that
measures the similarity of image pixel spectra to reference
spectra (Kruse et al., 1993). The reference spectra can be
either laboratory or field spectra, or spectra extracted from
the image for the known ground materials. The ground
materials are often referred to as endmembers and their
spectra as endmember spectra. SAM measures similarity by
calculating the angle between an image pixel spectrum and
a reference spectrum, treating them as vectors in a space with
dimensionality  equal to the number of bands (Kruse et al.,
1993).

A multispectral or hyperspectral image can be viewed as
a collection of band images, and each image pixel contains
a spectrum of reflectance values for all the wavebands in the
image. If a material such as healthy crop plants or bare soil
occupies the whole pixel, then the pixel spectrum may be
considered as the endmember spectrum of the ground
material.  For each endmember chosen, a spectral angle is
determined for every pixel in the image, and this angle value
is assigned to that pixel in the output spectral angle map or
SAM image. Smaller angle values indicate higher similarity
between the pixel and the endmember. The number of
derived SAM images is equal to the number of endmember
spectra used in the mapping. The spectral angle is insensitive
to gain factors (such as solar illumination) since the angle
between two vectors is independent of their length.

SAM has been used as a supervised classification method
for a variety of hyperspectral remote sensing applications
(Crósta et al., 1998; Rowan and Mars, 2003; Dennison et al.,
2004; Clark et al., 2005; Mundt et al., 2005). However, there
is no report on the use of SAM for mapping crop yield. Like
VIs, the spectral angle is an indirect measure of plant vigor
and abundance when applied in vegetation mapping. When
the endmember is a healthy crop canopy, small angle values
correspond to high‐vigor plants and large values correspond
to low‐vigor plants. On the other hand, if the endmember is
bare soil, then small values may indicate low‐vigor plants and
large values may indicate high‐vigor plants. Therefore, the
spectral angle can be used as a VI to estimate crop canopy
abundance and thus crop yield.

The objectives of this study were to (1) apply SAM to
airborne hyperspectral imagery for mapping grain sorghum
yield variability, and (2) relate grain yield monitor data with
SAM images and compare the results with those for all
possible narrow‐band NDVIs derived from the hyperspectral
imagey.

METHODS
IMAGERY AND YIELD DATA COLLECTION AND

PREPROCESSING
Two irrigated grain sorghum fields, owned and managed

by Rio Farms, Inc., at Monte Alto, Texas, were selected for
this study. These fields were 19 ha and 14 ha in size and
designated as fields 1 and 2, respectively. The geographic
coordinates near the centers of fields 1 and 2 were (98° 00′
05″ W, 26° 29′ 28″  N) and (98° 02′ 28″  W, 26° 28′ 55″  N),
respectively. The soil is Hidalgo fine sandy loam in field 1
and Rio fine sandy loam in field 2. Grain sorghum and cotton
are normally grown in rotation in these fields. Grain sorghum
(AgriPro 9850) was planted to the two fields in late February
and harvested in late June in 2000.

A hyperspectral imaging system described by Yang et al.
(2003) was used to acquire images from the fields. The
system consisted of a digital CCD camera, a prism‐grating‐
prism hyperspectral filter, a front lens, and a PC equipped
with a frame grabbing board and camera utility software. For
this study, the hyperspectral system was configured to
capture imagery with 128 bands covering a spectral range
from 457.2 to 921.7 nm at 3.63 nm intervals. The imagery had
a swath width of 640 pixels and a radiometric resolution of
12 bits.

A Cessna 206 single‐engine aircraft was used as the
platform for image acquisition. The hyperspectral imaging
system was mounted on a light aluminum frame along with
a three‐camera multispectral imaging system described by
Escobar et al. (1997). The three‐camera system was used as
a viewfinder to locate the target since the hyperspectral
system did not provide an overall view of the imaging area.
No stabilizer or inertial measurement device (IMU) was used
to dampen or measure platform variations, but care was taken
to minimize the effects of winds and changes in the aircraft's
speed and flight direction. For the given number of bands to
be captured and the sizes of the fields to be imaged, a flight
height of 1680 m (5500 ft) above ground level and a flight
speed of 150 km/h (93 mi/h) were predetermined. The
aircraft was stabilized at the predetermined flight altitude,
speed, and direction before the start of image acquisition and
was maintained at the same altitude, speed, and direction
during the course of image acquisition. Hyperspectral images
were acquired under sunny and calm conditions from the two
grain sorghum fields on 27 April 2000 after the crop achieved
its maximum canopy cover. The swath of the imagery was
approximately  840 m and the ground pixel size achieved was
1.3 m.

The geometric distortions in the imagery due to the
variations of the platform were corrected using a reference
line approach described by Yang et al. (2003). A reference
line, such as a straight field boundary or a road within the
image area, approximately parallel to the flight line was first
identified and the corresponding distorted line on the raw
image was manually digitized. Then the shift in pixels
between the reference line and the distorted line was
determined for each row of the raw image. Finally, each row
was shifted in the across‐track direction by the number of
pixels determined.

The geometrically restored hyperspectral images for the
two fields were rectified based on their respective
photographic images, which were taken in the growing
season and georeferenced to the Universal Transverse Mer-
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cator (UTM), World Geodetic Survey 1984 (WGS‐84), Zone
14, coordinate system. The images were resampled to 1 m
pixel resolution using the nearest‐neighbor algorithm during
the rectification process. The root mean square (RMS) errors
for the rectified hyperspectral images were 3.8 and 4.3�m for
fields 1 and 2, respectively, based on first‐order polynomial
transformations.  The relatively high RMS errors were mainly
due to other geometric distortions not corrected by the
reference line method.

For radiometric calibration, three 8 × 8 m tarpaulins with
reflectance values of 4%, 32%, and 48%, respectively, were
placed near the fields during image acquisition. The
reflectance values from the tarpaulins were measured using
a FieldSpec HandHeld spectroradiometer (Analytical
Spectral Devices, Inc., Boulder, Colo.) sensitive in the 350 to
1,050 nm portion of the spectrum with a spectral sampling
interval of 1.4 nm. The instrument was also used to take
reflectance spectra from grain sorghum plants, bare soil, and
highway surface in the imaging areas. The rectified
hyperspectral images were converted to reflectance based on
128 calibration equations (one for each band) relating
reflectance values to the digital count values extracted from
the three tarpaulins on the images. All procedures for image
rectification  and calibration were performed using ERDAS
IMAGINE (Leica Geosystems Geospatial Imaging, LLC,
Norcross, Ga.). Because the camera had low quantum
efficiency near the NIR end of the observed spectrum, the
reflectance values for wavelengths greater than 846 nm were
not reliable. In addition, the first few bands in the blue region
appeared to be noisy. Therefore, bands 1‐5 and 108‐128
(a�total of 26 bands) were removed from each hyperspectral
image, and the remaining 102 bands with center wavelengths
from 477.2 to 843.7 nm were used for analysis.

Yield data were collected using an Ag Leader Yield
Monitor 2000 system (Ag Leader Technology, Ames, Iowa).
Instantaneous yield, moisture, and GPS data were
simultaneously recorded at 1 s intervals. The yield monitor
was calibrated to ensure data accuracy before grain was
harvested. The combine equipped with the yield monitoring
system had an effective cutting width of 8.69 m. The yield
and GPS data from the yield monitor were viewed, cleaned,
and then exported in ASCII format using SMS Basic software
(Ag Leader Technology, Ames, Iowa). An optimum time lag
of 14 s, as determined with the method of Yang et al. (2002),
was used to align yield with position data, and the yield data
were adjusted to 14% moisture content.

SAM ANALYSIS

The angle of the two spectra is calculated by the following
formula (Kruse et al., 1993):
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where X is an image pixel spectrum, R is a reference
spectrum or an endmember spectrum, α is the spectral angle
between X and R measured in radians or degrees, and n is the
number of bands in the image.

The first step in SAM analysis is to determine the
endmembers and their spectra. Endmember spectra can be
obtained from the image, ground, or a spectral library.
However, spectra derived directly from the image data are
usually better than ground or library spectra because the
image spectra more accurately account for any errors in
calibration or atmospheric correction and sensor response
effects. Because of different plant growth stages and
temporally variant soil surface and moisture conditions
during a growing season, the reflectance spectra of crop
plants and soil background change from time to time.
Therefore, it may be better to use the endmember spectra
derived from an image only for that particular image. In this
study, grain sorghum plants and bare soil were selected as two
meaningful endmembers. To obtain pure spectra for sorghum
plants, 50 pixels that had a bright red color (corresponding to
healthy plants on a CIR image) were identified from each
image. Similarly, 50 pixels that contained pure bare soil were
identified from each image. These pixels were extracted from
the areas with known healthy plants and bare soil on the
ground. The endmember spectra for healthy plants and bare
soil for each image were obtained by averaging the spectra
of the respective pixels from that image.

In order to examine how the selection of endmembers
affects the SAM results, spectra for highway surface and wet
soil in the image for field 1 were extracted. Additionally,
ground reflectance spectra taken for healthy grain sorghum
plants, bare soil, highway surface, and water from or near
field 2 at the time of image acquisition were also used as
reference spectra. Thus, there were a total of six image
reference spectra (two plant spectra, two dry soil spectra, one
highway surface spectrum, and one wet soil spectrum) and
four ground reference spectra. Although the ten spectra were
from different images and ground surfaces, they were all used
for the calculation of SAM images for each field. ENVI
(Research Systems, Inc., Boulder, Colo.) was used for SAM
analysis.

NDVI AND STATISTICAL ANALYSIS

The 102‐band hyperspectral image and the ten SAM
images for each field were converted into grids in ArcInfo
(ESRI, Inc., Redlands, Cal.). The preprocessed yield data
were imported into ArcInfo as point coverages. Since the
combine's effective cutting width was 8.69 m and the cell
size of the image data was 1 m, these images were aggregated
by a factor of 9 to increase the cell size to 9 m. The digital
value for each output cell was the mean of the 81 input cells
that the 9 m × 9 m output cell encompassed. The yield value
for each output cell was the mean of the yield points falling
within the 9 m × 9 m output cell. On the average, each output
cell contained approximately five yield data points.

A total of 5151 [102!×(100!/2!)] narrow‐band NDVIs
were calculated from the 102 bands in each hyperspectral
image. Correlation matrices were calculated among grain
sorghum yield, the ten SAM images, and the 5151 NDVI
images for each field. Linear regression was used to
determine the best‐fitting equations for relating yield to the
SAM images and the best NDVIs. SAS software (SAS
Institute, Inc., Cary, N.C.) was used for statistical analysis.
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RESULTS AND DISCUSSION
Figure 1 shows the reflectance spectra for healthy grain

sorghum plants and dry bare soil extracted from the
hyperspectral images for fields 1 and 2. The spectra for
highway surface and wet soil extracted from the image for
field 1 are also presented. Figure 2 shows the ground
reflectance spectra for healthy sorghum plants, dry bare soil,
highway surface, and water taken from or near field 2 at the
time of image acquisition. The spectra extracted from the
images were slightly noisy compared with the ground
spectra. The three spectra for healthy plants had the typical
shape for vegetation, but were slightly different in magnitude
from one another because each spectrum represented the
spectral response of a different plant canopy. The three
spectra for dry bare soil were close to straight lines and very
similar in magnitude. The two highway surface spectra also
had a similar shape, but the spectrum taken on the ground had
slightly higher reflectance because it was taken from a
different spot on the highway from the area the image
spectrum was extracted.

Figure 1. Reflectance spectra for healthy grain sorghum plants and dry
bare soil derived from 102‐band airborne hyperspectral images for
fields�1 and 2. Spectra for highway surface and wet soil from the image for
field 1 are also shown.

Table 1 presents the spectral angles among the ten
reference spectra. Spectral angles ranged from 2.4° between
the image dry soil spectrum from field 2 and the ground soil
spectrum to 68.1° between the image plant spectrum from
field 2 and the ground water spectrum. As expected, spectral
angles between similar cover types were smaller than those
between different cover types. For example, grain sorghum
plants had spectral angles from 25° to 33° with dry bare soil,
from 38° to 46° with highway surface, from 44° to 48° with
wet bare soil, and from 65° to 68° with water. Clearly, grain
sorghum plants had large spectral differences from dry soil,
highway surface, wet soil, and water.

Table 2 summarizes the simple spectral angle statistics for
the SAM images derived from the hyperspectral images for
fields 1 and 2 based on the ten reference spectra. Mean
spectral angles varied from 8.1° to 59.8° for field 1 and from
9.3° to 58.8° for field 2. However, the standard deviation
values of the SAM images were similar among the ten
endmembers for each field, indicating that the SAM images
based on different reference spectra had similar variations in
spectral angle.

Figures 3 and 4 show the SAM images based on the dry
soil reference spectra extracted from the images for fields 1
and 2, respectively. Dark areas have small spectral angles and
represent pixels with large soil exposure and sparse plant
stands. Conversely, light areas have large spectral angles and
represent pixels with healthy plants. The SAM images based
on the reference spectra for highway surface, wet soil, and
water have similar gray patterns to those based on the dry soil
spectra. However, the SAM images based on the plant spectra
had opposite patterns. Small spectral angles represent
healthy plants, while large spectral angles indicate low‐vigor
plants and large soil exposure.

Table 3 shows the correlation coefficients between grain
yield monitor data and the SAM images based on the ten
reference spectra for both fields. Grain yield was
significantly negatively related with the SAM data based on
the plant spectra and positively related to the SAM data based
on the other non‐plant reference spectra. Although all the
reference spectra had similar r‐values, the ground water

Figure 2. Ground reflectance spectra for healthy grain sorghum plants,
dry bare soil, highway surface, and water taken from or near field 2 with
a spectroradiometer.
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Table 1. Spectral angles in degrees among ten endmember spectra (reference spectra)
derived from 102‐band airborne hyperspectral images and taken on the ground.

Endmember Plant1 Plant2 Plant3 Soil1 Soil2 Soil3 Road1 Road3 Wetsoil1 Water3

Plant1[a] 0 5.2 3.9 24.5 29.2 29.4 42.1 38.3 44 65.3
Plant2[b] 0 4.4 28.7 33.2 33.4 46 42.2 47.9 68.1
Plant3[c] 0 26.2 30.8 30.9 43.6 39.6 45.6 65.9

Soil1 0 5.7 5.6 18.4 14.9 21.1 45.9
Soil2 0 2.4 14 10.3 17.1 41.9
Soil3 0 14.1 10.3 16.9 41.9

Road1 0 5.5 6.1 31.3
Road3 0 10.1 32.4

Wetsoil1 0 32.7
Water3 0

[a] Plant1, soil1, road1, and wetsoil1 = Spectra for healthy grain sorghum plants, dry bare soil, highway surface, and wet bare soil derived from a 102‐band
airborne hyperspectral image for field 1.

[b] Plant2 and soil2 = Spectra for healthy grain sorghum plants and bare soil derived from a 102‐band airborne hyperspectral image for field 2.
[c] Plant3, soil3, road3, and water3 = Spectra for healthy grain sorghum plants, bare soil, highway surface, and water measured from or near field 2 with a

spectroradiometer.

Table 2. Simple spectral angle statistics in degrees for ten SAM (spectral angle mapper) images derived from
102‐band airborne hyperspectral images for fields 1 and 2 based on ten endmember spectra (reference spectra).

Endmember

Field 1 Field 2

Min Mean Max STD Min Mean Max STD

Plant1[a] 3.5[b] 8.1 27.8 4.6 3.6 9.3 35 7.7
Plant2[c] 5.3 11.9 32 4.9 2.5 11.3 38.9 8.9
Plant3[d] 4.6 9.9 29.6 4.6 3.8 10.1 36.4 8.1

Soil1 3.3 18.2 26 5 5.2 19.6 28.1 6.1
Soil2 5.8 22.8 30.5 5.1 4 23.2 32.7 7.7
Soil3 5.4 23.1 30.8 5.1 4.4 23.5 32.9 7.7

Road1 16 35.6 43.4 5.2 8.9 35.5 45.4 8.9
Road3 12.8 31.9 39.6 5.1 4.3 31.5 41.6 9

Wetsoil1 18.5 37.7 45.3 5 12.7 37.7 47.4 8.6
Water3 43.9 59.8 66.1 4.3 35.1 58.8 67.6 7.8

[a] Plant1, soil1, road1, and wetsoil1 = Spectra for healthy grain sorghum plants, dry bare soil, highway surface, and wet bare soil derived from a 102‐band
airborne hyperspectral image for field 1.
[b] Number of samples (pixels) = 2265 for field 1 and 1658 for field 2.
[c] Plant2 and soil2 = Spectra for healthy grain sorghum plants and bare soil derived from a 102‐band airborne hyperspectral image for field 2.
[d] Plant3, soil3, road3, and water3 = Spectra for healthy grain sorghum plants, bare soil, highway surface, and water measured from or near field 2 with a
spectroradiometer.

Figure 3. SAM (spectral angle mapper) image derived from a 102‐band airborne hyperspectral image for field 1 based on a dry bare soil reference
spectrum extracted from the image.

reference spectrum resulted in the highest r‐value (0.782) for
field 1, and the dry soil spectrum derived from field 2 and the
ground soil spectrum produced the highest r‐value (0.841) for
field 2. Evidently, the three plant spectra had slightly lower
r‐values than the other reference spectra. This is because the

plant reference spectra obtained from the images or on the
ground may not represent the plants that had the highest
yield. Although plant reference spectra corresponding to
high yield can be generally accurately identified based on the
CIR image, there is no guarantee that the identified spectra
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Figure 4. SAM (spectral angle mapper) image derived from a 102‐band
airborne hyperspectral image for field 2 based on a dry bare soil reference
spectrum extracted from the image.

represent the healthy plants with highest yield. On the other
hand, reference spectra derived from bare soil, highway
surface, or water always represent the areas with zero yield.
Therefore, it may be more reliable and accurate to use soil
spectra as reference spectra for generating SAM images
because bare soil can be found around any field. Moreover,
image‐derived reference spectra had essentially the same
results as ground spectra for soil and highway surface.

Table 4 summarizes the univariate statistics of absolute
correlation coefficients between grain yield and all 5151
NDVIs derived from the 102‐band hyperspectral images for
fields 1 and 2. The r‐values varied from 0.000 to 0.811 for
field 1 and from 0.001 to 0.879 for field 2. The center
wavelengths that resulted in lowest r‐values were 561 and
564 nm for field 1 and 778 and 822 nm for field 2, and the
center wavelengths that resulted in highest r‐values were 543
and 728 nm for field 1 and 742 and 789 nm for field 2. Clearly,
the best NDVIs resulted in higher correlations with yield than

Table 3. Correlation coefficients between grain sorghum yield and
ten SAM (spectral angle mapper) images derived from 102‐band

airborne hyperspectral images for fields 1 and 2 based
on ten endmember spectra (reference spectra).

Endmember Field 1 Field 2

Plant1[a] ‐0.768[b] ‐0.787
Plant2[c] ‐0.767 ‐0.827
Plant3[d] ‐0.759 ‐0.801

Soil1 0.772 0.836
Soil2 0.774 0.841
Soil3 0.772 0.841

Road1 0.772 0.831
Road3 0.774 0.830

Wetsoil1 0.772 0.832
Water3 0.782 0.830

[a] Plant1, soil1, road1, and wetsoil1 = Spectra for healthy grain sorghum
plants, dry soil, highway surface, and wet soil derived from a 102‐band
airborne hyperspectral image for field 1.

[b] All r‐values were significant at the p < 0.0001 level. Number of samples
(pixels) = 2265 for field 1 and 1658 for field 2.

[c] Plant2 and soil2 = Spectra for healthy grain sorghum plants and dry soil
derived from a 102‐band airborne hyperspectral image for field 2.

[d] Plant3, soil3, road3, and water3 = Spectra for healthy grain sorghum
plants, bare soil, highway surface, and water measured on the ground
with a spectroradiometer.

the SAM images for both fields. Nevertheless, the SAM‐
based best r‐values were better than the mean, median, or
75% quantile of the NDVI‐based absolute r‐values for each
field. In fact, the SAM‐based best r‐values (0.782 and 0.841)
were higher than 80% and 95% of the 5151 NDVI‐based
r‐values for fields 1 and 2, respectively. In addition, the SAM
images based on the soil reference spectra provided higher
r‐values with yield than at least 75% and 92% of the 5151
narrow‐band NDVIs for fields 1 and 2, respectively. The
higher r‐values from the NDVI approach was at the cost of
intensive calculations of all 5151 NDVI images, compared
with only a few images based on the SAM approach.
Therefore, if the goal is to derive a spectral map from a
hyperspectral image to show the spatial variability in yield
without knowing the actual yield, then a SAM image based
on a reference spectrum will be a better choice. However, if
the goal is to determine the best correlation based on the
actual ground data, then all NDVIs can be derived to identify
the best one. Current commercial image processing software
has the capability to generate SAM images based on
reference spectra, but it does not have the functionality to
automatically  calculate all possible NDVIs for hyperspectral
imagery.

Figures 5 and 6 show contour maps of absolute r‐values
between yield and all possible NDVIs for fields 1 and 2,
respectively. Since NDVIij = 0 when band i = band j, r‐values
do not exist on the diagonal line. Although it suffices to show
the contour map below or above the diagonal line for each
field, a square map is presented based on the symmetry of the
absolute r‐values for the 5151 band pairs. These contour
maps clearly illustrate the r‐value distributions for all the
band pairs. For field 1, r‐values were generally higher when
one band had wavelengths below 720 nm and the other band
had wavelengths above 720 nm than when both bands in a
pair had wavelengths below 720 nm or above 750 nm. The
contour map for field 2 has some similarities to and
differences from the contour map for field 1. The r‐values
were also generally higher when one band had wavelengths
below 720 nm and the other band had wavelengths above
720�nm than when both bands in a pair had wavelengths
above 750 nm. Unlike for field 1, most of the r‐values for
band pairs with wavelengths above 540 nm and below 700
nm were generally high for field 2. Nevertheless, it is more
likely to obtain better NDVI images by selecting one band

Table 4. Univariate statistics of absolute correlation coefficients (r)
between grain sorghum yield and all possible NDVIs derived from

102‐band airborne hyperspectral images for fields 1 and 2.
Statistics[a] Field 1 Field 2

Min[b] 0.000 0.001
25% Quantile 0.366 0.766

Mean 0.569 0.747
Median 0.724 0.821

75% Quantile 0.771 0.829
Max[c] 0.812 0.879

[a] The number of NDVIs was 5151. NDVIij = (Rj ‐ Ri)/(Ri + Rj), where Ri is
the reflectance for band i, i = 1, 2, ..., 101 and j = i + 1, ..., 102. Correlation
was significant at 0.0001 level if r > 0.079 for field 1 and if r > 0.093 for
field 2. The number of samples (pixels) used to calculate each r‐value
was 2265 for field 1 and 1658 for field 2.

[b] Center wavelengths were 561 and 564 nm for field 1, and 778 and
822�nm for field 2.

[c] Center wavelengths were 543 and 728 nm for field 1, and 742 and
789�nm for field 2.
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Figure 5. Contour map showing absolute correlation coefficients between
grain sorghum yield and all possible narrow‐band NDVIs derived from a
102‐band airborne hyperspectral image for field 1. When band i = band�j,
NDVIij = 0 and r values do not exist (shown by the diagonal line).

Figure 6. Contour map showing absolute correlation coefficients between
grain sorghum yield and all possible narrow‐band NDVIs derived from a
102‐band airborne hyperspectral image for field 2. When band i = band�j,
NDVIij = 0 and r values do not exist (shown by the diagonal line).

with wavelengths below 720 nm and the other above 720 nm
for both fields.

Figures 7a and 8a show scatter plots and regression lines
between grain yield and the SAM images based on the dry
soil spectra extracted from the hyperspectral images for
fields 1 and 2, respectively. For comparison, scatter plots and
regression lines between grain yield and the best NDVIs for
the respective fields are also presented in figures 7b and 8b.
Although the SAM images provided better yield estimation
than most of the NDVIs, the best NDVIs had better relations
with yield. The SAM images based on the dry soil reference
spectra explained 60% and 71% of the variability in yield for
fields 1 and 2, respectively, while the best NDVIs explained
66% and 77% of the variability for the respective fields.

Figure 7. Scatter plot and regression line between grain sorghum yield
monitor data and a SAM (spectral angle mapper) image derived from a
102‐band airborne hyperspectral image for field 1 based on a dry soil
reference spectrum extracted from the image, compared with the
relationship between yield and the best narrow‐band NDVI19, 70 (band 19
= 543 nm and band 70 = 728 nm) for the field.

SUMMARY AND CONCLUSIONS
This study demonstrated the use of the SAM technique to

derive SAM images from hyperspectral imagery for crop
yield estimation. Six reference spectra extracted directly
from the hyperspectral images and four reflectance spectra
taken on the ground were used to derive SAM images.
Statistical analysis showed that grain yield monitor data were
significantly related to the SAM images. Although all the
reference spectra produced similar correlation results, in
practice it is more appropriate to use soil spectra for
generating SAM images because soil spectra can be easily
and accurately obtained.

Correlation analysis of yield with all 5151 possible NDVIs
derived from the 102‐band hyperspectral imagery indicated
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Figure 8. Scatter plot and regression line between grain sorghum yield
monitor data and a SAM (spectral angle mapper) image derived from a
102‐band airborne hyperspectral image for field 2 based on a dry soil
reference spectrum extracted from the image, compared with the
relationship between yield and the best narrow‐band NDVI74, 87 (band 74
= 742 nm and band 87 = 789 nm) for the field.

that although SAM images provided higher r‐values than
most of the NDVIs, the best NDVIs had better relations with
yield. However, since each NDVI is based on only two
narrow bands and a large number of NDVIs can be derived
from a hyperspectral image, a single choice of two narrow
bands could result in a poor representation of the yield
variability. Generally, an NDVI calculated from a visible
band and an NIR band can be a better representation than that
derived from two visible bands or two NIR bands. Like an
NDVI image, a SAM image can be easily generated from a
hyperspectral image based on a soil reference spectrum to
characterize  the spatial variability in yield. In contrast, a
SAM image uses all the spectral bands in the image, and can
provide a reliable estimation of yield variability based on a

single soil reference spectrum derived from the hyperspectral
image or measured on the ground.

SAM provides researchers and practitioners an alternative
or supplemental tool to reduce a hyperspectral image to a
single‐layer image for mapping yield variability. Like all VIs
used in remote sensing, SAM has its own advantages and
limitations.  It can be used alone or in conjunction with other
VIs for yield estimation. This study was the first to evaluate
SAM for crop yield estimation, and more research is needed
to evaluate this technique and explore its potential for
deriving yield and other crop information.
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